LEAP - Refactoring to Improve Code
Science & Technology
LEAP - Refactoring to Improve Code
Refactoring is a critical step in ensuring that your codebase remains maintainable, readable, and efficient. With 100% test coverage, we're in a good place to start refactoring our codebase. We'll leverage our AI system to help identify and recommend code improvements. Let's walk through this process step-by-step.
Enhancing Tests with Parameterization
First, we'll start with our test suite. Here, we have numerous test cases that could be more efficiently written. By asking our AI to refactor these tests, we can reduce duplication and increase readability.
import pytest
@pytest.mark.parametrize("item_type, sell_in, quality", [
("normal", 10, 20),
("self", 5, 7),
("backstage_pass", 15, 20),
# Add other scenarios here
])
def test_update_quality(item_type, sell_in, quality):
item = Item(item_type, sell_in, quality)
gilded_rose = GildedRose([item])
gilded_rose.update_quality()
# Add assertions specific to each item type
By parameterizing our tests with pytest.mark.parametrize
, we condense multiple test cases into a single, readable function. Running our tests confirms that we still maintain 100% code coverage.
Reducing Nested Logic and Magic Numbers
Next, we'll examine the actual code. Complex nesting and hardcoded values make it challenging to maintain. We'll ask our AI assistant to refactor the update_quality
method, aiming for reduced duplication and improved maintainability.
def update_quality(items):
for item in items:
update_sell_in(item)
update_item_quality(item)
if item_needs_expiration_update(item):
handle_expired_item(item)
def update_sell_in(item):
item.sell_in -= 1
def update_item_quality(item):
# Update quality logic
def item_needs_expiration_update(item):
return item.sell_in < 0
def handle_expired_item(item):
# Handle expired items
Running our tests shows that we still maintain 100% coverage. However, magic numbers and hardcoded strings still exist in our code. We'll ask the AI to remove these and instead use constants.
NORMAL = "normal"
SELF = "self"
BACKSTAGE_PASS = "backstage_pass"
def update_quality(items):
for item in items:
update_sell_in(item)
update_item_quality(item)
if item_needs_expiration_update(item):
handle_expired_item(item)
NORMAL = "normal"
SELF = "self"
BACKSTAGE_PASS = "backstage_pass"
def update_quality(items):
for item in items:
update_sell_in(item)
update_item_quality(item)
if item_needs_expiration_update(item):
handle_expired_item(item)
def update_sell_in(item):
item.sell_in -= 1
def update_item_quality(item):
# Update quality logic
def item_needs_expiration_update(item):
return item.sell_in < 0
def handle_expired_item(item):
# Handle expired items
We've now removed magic numbers and hardcoded strings, improving the maintainability and readability of our code.
Simplifying the Addition of New Items
Our existing code makes it cumbersome to add new item types, requiring multiple changes in different places. We'll ask our AI assistant to help simplify this by creating separate functions for each item type and using a dictionary to map item names to their respective update functions.
UPDATE_FUNCTIONS = (
NORMAL: update_normal_item,
SELF: update_self_item,
BACKSTAGE_PASS: update_backstage_pass_item,
)
def update_item(item):
update_func = UPDATE_FUNCTIONS.get(item.name, default_update_function)
update_func(item)
def update_normal_item(item):
# Logic for normal item
def update_self_item(item):
# Logic for self item
def update_backstage_pass_item(item):
# Logic for backstage pass item
def default_update_function(item):
# Default update logic
Adding a new item type now involves simply creating a function and updating the dictionary.
Refining Item Expiration Handling
Handling item expiration logic within each function makes the code more modular. We'll refactor our handle_expired_item
function to encapsulate item-type-specific expiration logic.
def handle_expired_item(item):
if item.name in EXPIRED_UPDATE_FUNCTIONS:
EXPIRED_UPDATE_FUNCTIONS[item.name](item)
EXPIRED_UPDATE_FUNCTIONS = (
NORMAL: handle_normal_item_expiration,
SELF: handle_self_item_expiration,
BACKSTAGE_PASS: handle_backstage_pass_item_expiration,
)
def handle_normal_item_expiration(item):
# Expiration handling logic for normal item
def handle_self_item_expiration(item):
# Expiration handling logic for self item
def handle_backstage_pass_item_expiration(item):
# Expiration handling logic for backstage pass item
Filtering Out Invalid Data Before Processing
Finally, to further clean our code, we'll filter out any invalid items before entering the processing loop.
def update_quality(items):
valid_items = [item for item in items if is_valid_item(item)]
for item in valid_items:
update_sell_in(item)
update_item_quality(item)
if item_needs_expiration_update(item):
handle_expired_item(item)
def is_valid_item(item):
return item.name in VALID_ITEM_NAMES
VALID_ITEM_NAMES = (NORMAL, SELF, BACKSTAGE_PASS)
Conclusion
By leveraging AI to assist in the refactoring process, we've significantly improved the maintainability, readability, and efficiency of our codebase. With cleaner, more modular code, future updates and additions will be easier to implement.
Keywords
- Refactoring
- AI Assistant
- Code Maintainability
- Code Readability
- Test Coverage
- Parameterization
- Magic Numbers
- Hardcoded Values
- Item Handling
FAQ
Q1: Why is parameterization of tests important?
Parameterizing tests reduces duplication and makes test cases more readable and manageable. This approach consolidates multiple similar tests into a single test function, enhancing efficiency.
Q2: How can removing magic numbers and hardcoded values improve code maintainability?
Using constants instead of magic numbers and hardcoded values makes the code easier to understand and update. It helps prevent errors and enhances readability.
Q3: What is the benefit of mapping item update functions in a dictionary?
Using a dictionary to map item names to their respective update functions simplifies the process of adding new item types. It centralizes the logic, reducing the places where changes are needed.
Q4: Why should we filter out invalid data before processing?
Filtering out invalid data before processing helps avoid unnecessary checks within the loop, making the code cleaner and more efficient. This approach ensures that only valid items are processed.
Q5: What is the role of the AI assistant in this refactoring process?
The AI assistant provides insightful recommendations, identifies code improvements, and suggests refactoring steps. This accelerates the refactoring process and ensures a high-quality outcome.